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Many approximate methods of quantum chemistry yield potential energy surfaces with
discontinuities. While clearly unphysical, such features often fall within the typical error
bounds of the method, and cannot be easily eliminated. The integration of nuclear trajec-
tories when the potential energy is locally discontinuous is obviously problematic. We pro-
pose a method to smooth out the discontinuities that are detected along a trajectory, based
on the definition of a continuous function that fits locally the computed potential, and is
used to integrate the trajectory across the discontinuity. With this correction, the energy
conservation error can be reduced by about one order of magnitude, and a considerable
improvement is obtained in the energy distribution among the internal coordinates.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Classical trajectories for the nuclear motion are the basis of molecular dynamics treatments of ground and excited state
processes. In this approach the potential energy for the nuclear motion is one of the eigenvalues of the electronic hamilto-
nian, that depends on the nuclear coordinates as parameters. When a direct strategy is used, the potential energy surface
(PES) and its gradient are computed at every time step of the trajectory, i.e. for a given molecular geometry by means of
quantum chemistry methods [1–4]. The alternative is to use analytic potential energy functions, either of standard molecular
mechanics (MM) type or devised ad hoc for specific systems and processes. The construction of accurate PESs for reaction
dynamics and/or multistate processes can be a complex problem, especially in the case of state degeneracies (conical inter-
sections and crossing seams [5]), and its computational cost increases exponentially with the number of internal coordi-
nates. On the other hand, the cost of direct methods depends linearly on the number and duration of the trajectories,
which makes them convenient for the simulation of processes in the picosecond time scale.

One of the drawbacks of the direct use of quantum chemistry methods in trajectory simulations is the possible occurrence
of discontinuities in the computed PES. Most methods for the solution of the many-electron problem rely on the variational
optimization of non-linear parameters, and may therefore admit several solutions. In other words, the energy, as a function
of the electron density or wavefunction parameters, may possess one or more local minima in addition to the global one. If
the molecular geometry is varied by small steps, as in trajectory calculations or when scanning a potential energy curve, it is
not uncommon to switch from one solution to another one, with a ‘‘sudden” change in the electronic energy and in all other
properties. Even if the change takes place gradually, but in a very small interval of internal coordinates, it is seen as a dis-
continuity if one samples the PES by finite time or space steps.

The SCF, DFT and MCSCF methods provide good examples of such behaviour [6–12,4]. In CASSCF, a variant of the general
MCSCF approach, the definition of the active space (number of active electrons and orbitals) suffices to determine the global
. All rights reserved.
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minimum. However, swapping an active orbital whose occupation number is close to 0 or 2 with a virtual or doubly occupied
orbital, may yield another stable solution of slightly higher energy [10–12]. The particular solution found at a given geometry
by the iterative self-consistent procedure depends on many technical details, such as the starting molecular orbitals (MO)
and the algorithms that accelerate and/or stabilize the convergence. For instance, the practice of using the MOs of the pre-
vious step in a trajectory calculation as the starting point for the SCF or MCSCF procedure may help to maintain a particular
solution. However, a solution corresponding to the global minimum for a certain range of molecular geometries, may be just
a local minimum at other geometries, and disappear altogether (no minimum) at others yet; in these cases, a sudden switch
between two solutions is unavoidable. Configuration Interaction (CI) calculations, of variational or perturbative type, can be
based on the SCF or MCSCF MOs in order to improve the treatment of electron correlation. The CI results depend on the MOs,
so again they may undergo sudden changes due to switching between different SCF or MCSCF solutions, even if the switch
implies a very small change in the SCF or MCSCF energies (a typical case is the conversion from localized to delocalized orbi-
tals). Similar problems are also met with the floating occupation (FO) semiempirical SCF-CI method set up by Granucci et al.
[2]. The FO-SCF-CI is an inexpensive alternative to state average (SA) MCSCF for the balanced determination of two or more
electronic states, and can be also applied in the ab initio framework [13]. In SA-MCSCF calculations, often used in ab initio
multistate molecular dynamics, a further source of discontinuities in the solution is the occurrence of root-switching, i.e. a
change in the composition of the subspace of electronic states that are optimized [4]. Notice that root-switching does not
affect the FO-SCF-CI results. We end this short overview of possible sources of PES discontinuities, by noting that minor prob-
lems are also met in pure MD or in mixed QM/MM treatments, because of cutoffs in the evaluation of small interaction terms
or integrals.

The presence of discontinuities in the PES is an unphysical feature, but in many cases cannot be easily eliminated. Two
solutions of the electronic problem can be qualitatively and even quantitatively satisfactory, each one in its own range of
molecular geometries, and yet not match at intermediate geometries. If the mismatch in the energy of the relevant electronic
state does not exceed the typical error of the computational method, it is reasonable to smooth out the discontinuity in order
to be able to integrate the trajectories across it. When the PES are prepared beforehand by fitting or interpolation, the dis-
continuities are automatically smoothed away, and possibly not even noticed. When using the direct approach, one cannot
anticipate at which molecular geometry a discontinuity will be met. Even worse, if the convergence of the SCF or MCSCF
algorithms is facilitated by using the MOs of the previous trajectory step as a starting point, the switch to another solution
is determined by the trajectory itself, the time step, and other technical details. Therefore, we propose a fitting procedure,
with a modification of the trajectory integration, to be applied locally when a discontinuity is detected. The mathematical
formulation is described in the next section, and the results of tests with a model potential are shown in Section 3.
2. Method

We shall describe a trajectory by nvar cartesian coordinates XðtÞ, functions of time, and the related velocities VðtÞ. The
kinetic and potential energies are also functions of time: TðtÞ � TðVðtÞÞ and UðtÞ � UðXðtÞÞ. The PES UðXÞ comes in two sheets,
with a discontinuity at the border between them, that we shall call the discontinuity seam. The seam is a set of points of
dimension nvar � 1, whose location in the coordinate space is a priori unknown. The total energy E ¼ T þ U should be con-
stant, within the computational accuracy. Several integration methods commonly used, such as those of the Verlet family
[14], are based on the PES gradients GðXÞ and do not make use of the potential energy values. Therefore, if a trajectory goes
through a discontinuity during a time step Dt, the immediate effect is a change in the total energy, from EðtÞ to Eðt þ DtÞ,
roughly equal to Uðt þ DtÞ � UðtÞ. This quantity is in turn an approximation of the exact potential step,
UD ¼ limt!tþD

UðtÞ � limt!t�D
UðtÞ, where tD is the time at which the trajectory crosses the discontinuity seam (notice that in

most practical cases tD is not easily determined with a resolution better than Dt). The discontinuity is therefore detected
by checking the energy conservation, as usually done to test the accuracy of the integration. Of course, across the same time
step the gradient is also expected to change more or less abruptly, and the gradient discontinuity is also detrimental to the
integration accuracy. In some cases one may accidentally find Uðt þ DtÞ ’ UðtÞ, in spite of switching between two different
solutions of the electronic problem. Then, the comparison of the two gradients at XðtÞ and Xðt þ DtÞ can be useful to detect
the discontinuity, when the energy criterium fails. Therefore, we shall apply the smoothing procedure described below,
whenever two successive time steps t and t þ Dt yield
jEðt þ DtÞ � EðtÞj > Ethresh ð1Þ
or
jGðt þ DtÞ � GðtÞj2=jXðt þ DtÞ � XðtÞj2 > Gthresh ð2Þ
In all the tests we have performed, the two thresholds were set to Ethresh ¼ 0:0002 a:u: and Gthresh ¼ 2 a:u:
Note that the energy conservation could be enforced by simply resetting the kinetic energy to

T 0ðt þ DtÞ ¼ TðtÞ þ UðtÞ � Uðt þ DtÞ. However, this simple recipe does not define univocally the corrected velocity vector.
Moreover, when Uðt þ DtÞ � UðtÞ > TðtÞ it cannot be applied. This is why we propose a slightly more elaborated procedure.
We define a fitting function FðXÞ, with continuous first derivatives, connecting two points of the trajectory, X1 ¼ Xðt1Þ and
X2 ¼ Xðt2Þ, at the opposite sides of the discontinuity. FðXÞmust approximate the computed PES UðXÞ in the neighborhoods of
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both X1 and X2, so we shall require FðXÞ to have the same values and gradients as UðXÞ in these two points. The integration of
the trajectory for the time interval ½t1; t2� will be repeated, using FðXÞ as the potential energy function, and then we shall
switch again to the true PES UðXÞ. Of course, after time t1 and geometry X1 the trajectory will be altered, and in general
the point X02 obtained at time t2 will differ from X2. Because of this fact, the algorithm is not time-reversible.

In order to bridge the discontinuity, that is known to occur between the times t and t þ Dt, we must choose t1 6 t and
t2 P t þ Dt. The simplest possibility is t1 ¼ t and t2 ¼ t þ Dt (‘‘one-step” procedure), but we prefer to choose two points fur-
ther from the discontinuity for two reasons. One is that, near the discontinuity, many quantum chemistry methods may un-
dergo numerical problems, and yield inaccurate energies and gradients. In fact, note that either XðtÞ or Xðt þ DtÞ may lie
accidentally very close to the discontinuity. There is a second reason against setting t2 ¼ t þ Dt: with X2 near the disconti-
nuity, the neighborhood of X2 where FðXÞ approximates well UðXÞ would have a sharp boundary very close to X2, and the
point X02 may easily fall outside this region. This situation is illustrated in Fig. 1. In such conditions, resuming the integration
with the UðXÞ potential leads to large errors, as we have observed in a set of tests described in the next section. Our standard
choice is therefore: X1 ¼ Xðt � DtÞ and X2 ¼ Xðt þ 2DtÞ. The latter point is obtained by propagating the trajectory for one
time step more, after detecting the discontinuity, with the UðXÞ potential. Fig. 1 depicts the basic elements of this ‘‘three-
step” procedure for a one-dimensional case.

The function FðXÞ must obey 2ðnvar þ 1Þ conditions:
Fig. 1.
referen
X2 ¼ Xð
not exc
FðX1Þ ¼ UðX1Þ
FðX2Þ ¼ UðX2Þ
@F
@X

� �
X¼X1

¼ GðX1Þ

@F
@X

� �
X¼X2

¼ GðX2Þ

ð3Þ
We shall adopt a general expression of the form
FðXÞ ¼ ½1� SðaÞ� ½U1 þ Gt
1ðX� X1Þ� þ SðaÞ ½U2 þ Gt

2ðX� X2Þ� ð4Þ
Here a is the advancement coordinate
a ¼ ðX2 � X1ÞtðX� X1Þ
jX2 � X1j2

ð5Þ
Schematic illustration of the method. The lower curves represent our standard ‘‘three-step” procedure, whereby we define the F function with
ce to the points X1 ¼ Xðt � DtÞ and X2 ¼ Xðt þ 2DtÞ. The upper curves show an unfavorable case for the ‘‘one-step” procedure, with X1 ¼ XðtÞ and
t þ DtÞ. The vertical bars show the range of coordinates where the function FðXÞ approximates well the potential UðXÞ, i.e. where jFðXÞ � UðXÞj does
eed 1/10 of the potential step.
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and SðaÞ is the sigmoid function
SðaÞ ¼
0 for a 6 0
3a2 � 2a3 for 0 6 a 6 1
1 for a P 1

8><
>: ð6Þ
The constraints (3) are satisfied by choosing
U1 ¼ UðX1Þ
U2 ¼ UðX2Þ
G1 ¼ GðX1Þ
G2 ¼ GðX2Þ

ð7Þ
With a substantial potential step UD we have U2 � U1 ’ UD, so the gradient of FðXÞ will be largest around the midpoint
ðX1 þ X2Þ=2, and will point approximately in the direction X2 � X1. The complete expression of the gradient of FðXÞ, that is
used to integrate Newton’s equations, is
@F
@Xr
¼ U2 � U1 � Gt

1ðX� X1Þ þ Gt
2ðX� X2Þ

� � @S
@a

@a
@Xr
þ ½1� SðaÞ�G1 þ SðaÞG2 ð8Þ
with
@a
@Xr
¼ X2;r � X1;r

jX2 � X1j2
ð9Þ
and
@S
@a
¼ 6ða� a2Þ for 0 6 a 6 1 ð10Þ
while dS=da ¼ 0 outside this interval.
To integrate the trajectories we made use of the velocity Verlet algorithm [14], which allows for calculation of the poten-

tial and kinetic energies at the same time and only needs the positions and velocities at a given time t to propagate them at
t þ Dt. Our conclusions, however, are largely independent on the integration algorithm as long as the time step is small en-
ough to guarantee a sufficient accuracy. The integration from time t1 ¼ t � Dt and position X1, to t2 ¼ t þ 2Dt and X02 is done
with a time step Dt0 smaller than Dt, because the fitting potential FðXÞ can be considerably steeper than UðXÞ, and because in
real applications it does not imply time-consuming quantum chemistry calculations. In some preliminary tests with the
model potentials used in the next section we found that a 20-fold reduction of the time step ðDt0 ¼ Dt=20Þ was more than
sufficient, so it was adopted throughout the other tests. When resuming the integration with the UðXÞ potential at t2 and X02,
we calculate the exact UðX02Þ and GðX02Þ quantities, instead of using the approximate values given by FðXÞ.
3. Tests with a model potential

We ran several tests with the model potential
UðXÞ ¼ Ae�BX1 þ VD HðX1 � XDÞ þ
Xnvar

r¼2

Cr ½Xr � HD HðX1 � XDÞ�2 ð11Þ
where HðXÞ is the Heaviside function. The discontinuity is found at X1 ¼ XD, and has a ‘‘vertical” and a ‘‘horizontal” compo-
nent, VD and HD, respectively. Most of the tests were done with the following values of the parameters:
A ¼ 0:08; B ¼ 0:3; Cr ¼ 0:20, XD ¼ 6, all in atomic units. The mass was M ¼ 20;000 a:u: (same for all the coordinates). With
this form of the discontinuity the exact solution is easily computed, using the reflection and refraction laws. The disconti-
nuity seam is perpendicular to the X1 direction, so only V1 is affected. When the UD step is positive and larger than the
T1 ¼ MV2

1=2 component of the kinetic energy, the trajectory is reflected, i.e. the sign of V1 is reversed. When UD < T1, the

velocity V1 is changed to V 01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

1 � 2UD=M
q

. Notice that in practical applications the exact position and orientation of

the seam are unknown, so the reflection and refraction laws cannot be applied. Thanks to the simplicity of the model poten-
tial, we were able to test the procedure described in the previous section versus the exact theory.

Each test consisted of 500 trajectories, with initial coordinates and velocities sampled according to Gaussian distributions.
For the X1 coordinate, the Gaussian was centered at hXi ¼ 3 a:u:, with the standard deviation rX ¼ 0:5 a:u:, and for all the
other coordinates we had hXi ¼ 0 and rX ¼ 0:2 a:u: The velocities were centered at hVi ¼ 0, with rV ¼ 0:0005 a:u: Different
values of rX and rV were used in particular cases. The trajectories were stopped at tmax ¼ 10000 a:u: (about 250 fs) and the
standard time step was 10 a.u. (about 0.25 fs). Table 1 shows a selection of results, with different choices of the physical and
numerical parameters.



Table 1
Results of some selected tests. All quantities in a.u., energies in mH (10�3 a.u.). The UD column reports the average and standard deviation of the largest
potential step found along each trajectory. The DE and DE1 columns report the energy conservation and energy transfer errors (averages and standard
deviations). The ‘‘beyond disc.” column reports the percentage of trajectories that end beyond the discontinuity ðX1ðtmaxÞ > 6 a:u:Þ and the error with respect to
exact calculations (in parenthesis). Unless stated otherwise in the first column, the tests are made with
nvar ¼ 2; HD ¼ 0:10 a:u:; VD ¼ 0; M ¼ 20; 000 a:u:; Cr ¼ 0:2 a:u:; Dt ¼ 10 a:u:.

tested parameter HD VD UD DE DE1 Beyond disc. (%)

VD 0 �20 �20.00 ± 0.00 0.00 ± 0.00 �2.88 ± 3.23 100.0 (0)
0 �10 �10.00 ± 0.00 0.00 ± 0.00 �1.44 ± 1.62 100.0 (0)
0 10 10.00 ± 0.00 0.34 ± 0.23 1.75 ± 1.51 100.0 (0.4)
0 20 20.00 ± 0.00 2.42 ± 1.65 5.02 ± 2.88 99.2 (42.0)

HD 0.050 0 0.34 ± 3.40 0.01 ± 0.06 0.04 ± 0.77 100.0 (0)
0.100 0 1.68 ± 6.81 0.14 ± 0.50 0.08 ± 1.98 100.0 (1.4)
0.150 0 4.01 ± 10.21 0.42 ± 1.41 �0.36 ± 4.04 100.0 (6.4)
0.200 0 7.35 ± 13.61 0.85 ± 3.14 �1.90 ± 6.70 99.6 (16.2)

nvar ¼ 3a 0.071 0 1.61 ± 6.70 0.09 ± 0.43 0.30 ± 2.53 100.0 (1.0)
nvar ¼ 6 0.045 0 1.82 ± 6.42 0.04 ± 0.15 0.74 ± 3.29 100.0 (1.2)
nvar ¼ 15 0.027 0 2.08 ± 6.32 0.00 ± 0.07 1.25 ± 4.39 100.0 (1.4)
nvar ¼ 48 0.015 0 1.77 ± 6.40 �0.06 ± 0.03 1.47 ± 5.62 100.0 (0.8)

Cr ¼ 0:01b 0.447 0 2.16 ± 6.84 0.15 ± 0.49 0.22 ± 2.21 100.0 (1.6)
Cr ¼ 0:05 0.200 0 2.23 ± 6.82 0.18 ± 0.61 0.02 ± 2.66 100.0 (1.8)
Cr ¼ 2:00 0.032 0 2.22 ± 6.54 0.14 ± 0.51 0.22 ± 2.22 100.0 (1.0)

M ¼ 2000c 0.150 0 1.67 ± 6.83 0.14 ± 0.48 0.13 ± 1.93 100.0 (0.4)
M ¼ 100; 000d 0.150 0 1.68 ± 6.80 0.14 ± 0.49 0.07 ± 1.99 100.0 (1.6)

Dt ¼ 1 0.150 0 1.68 ± 6.80 0.10 ± 0.71 0.08 ± 1.97 100.0 (1.4)
Dt ¼ 50 0.150 0 1.70 ± 6.84 0.07 ± 0.62 0.11 ± 2.06 100.0 (1.4)

One-step, Dt ¼ 10 0.150 0 1.68 ± 6.81 �0.30 ± 1.90 �0.14 ± 2.43 99.6 (1.8)
one-step, Dt ¼ 30 0.150 0 1.69 ± 6.85 �0.25 ± 1.84 �0.16 ± 2.17 100.0 (1.4)

a The horizontal discontinuity HD scales as ðnvar � 1Þ�1=2 : HD ¼ 0:10=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nvar � 1
p

.
b The horizontal discontinuity HD and the gaussian width for the X2 initial conditions scale as C�1=2

r : HD ¼ 0:10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:20=Cr

p
; rX ¼ 0:20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:20=Cr

p
.

c The gaussian width for the velocity initial conditions scales as M�1=2 : rV ¼ 0:0005
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20; 000=M

p
.

d The time tmax is extended to 20,000 a.u., so that all trajectories go through the discontinuity in spite of the slower dynamics.
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We tested the internal consistency of the method under two different aspects. First, we have evaluated the performance
of our procedure in the absence of discontinuities (HD ¼ 0 and VD ¼ 0), by forcing its use when a trajectory crosses the
X1 ¼ XD threshold. In this case one would like to obtain the same trajectory by using UðXÞ or FðXÞ, i.e. X02 ¼ X2. We computed
the relative error jX02 � X2j=jX2 � X1jwith the standard parameters given above, and we obtained a root mean squared (RMS)
value of 2:5� 10�4. This small error is partly due to the inaccuracy of the fitting potential and partly to the use of two dif-
ferent time steps Dt and Dt0 in computing X2 and X02. In fact, by using Dt0 ¼ Dt ¼ 10 a:u: the RMS relative error is reduced to
1:6� 10�4. Another required feature is the invariance under rotations of the coordinate system, which means the results
must be independent on the molecular orientation. This is warranted by the fact that the fitting function FðXÞ is defined
in terms of scalars and vectors with the correct transformation properties under rotations. A change in the coordinate system
only affects the numerics. To test this point, we rotated the X1 and X2 axes by an arbitrary angle, so that the exponential term
and the first harmonic term in the model potential depend on both coordinates. With a rotated potential, and consistently
rotated initial conditions, we obtain the same results of Table 1.

To test the accuracy of the method, besides the energy conservation, we also considered the final energy partition among
the nvar coordinates. Without the horizontal discontinuity, i.e. when HD ¼ 0, the UðXÞ potential is separable into a sum of
single coordinate terms Ur , namely the exponential term plus the vertical discontinuity term for the X1 coordinate, and
the harmonic terms for r P 2. Then, the total energy can be partitioned into time-independent components Er ¼ Ur þ Tr .
The horizontal discontinuity brings about an energy transfer between X1 and the other coordinates, but the Er energy com-
ponents are still constant before and after the discontinuity. Our general procedure, not tailored to a specific form of the po-
tential, can deviate from the theoretical energy partition. We shall therefore monitor the error in E1, i.e. the computed final E1

minus its exact value obtained by the reflection and refraction laws: DE1 ¼ E1;compðtmaxÞ � E1;exactðtmaxÞ. The error in the total
energy is instead an internal test: DE ¼ EðtmaxÞ � Eð0Þ.

The single parameter with the largest effect on the accuracy appears to be the UD potential step. When the discontinuity is
only vertical ðHD ¼ 0;VD–0Þ; UD is the same for all trajectories and coincides with VD. This simple case is illustrated in Fig. 2
(see also Table 1), where we plot the average and the standard deviation of the errors in the total energy, DE, and in the E1

component, DE1. Negative discontinuities UD < 0 do not affect the energy conservation, and good results are obtained also
with positive UD, up to 10–15 mH (1 mH � 10�3 a:u:). The DE1 error is larger, i.e. a certain amount of energy transfer takes
place, which is an artifact not fully eliminated by the proposed procedure. In this example as in all the following ones, one
should consider that, without corrections, both DE and DE1 would be approximately the same as UD. We see that our algo-
rithm reduces DE by more than one order of magnitude and DE1 by a factor 5, for VD up to 15 mH. With positive VD, a fraction



Fig. 2. Averages and standard deviations of the error on the total energy, DE, and on the E1 component, DE1, as functions of the vertical discontinuity
parameter VD .
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of the trajectories should be reflected by the discontinuity and should end up with X1ðtmaxÞ < XD. In fact, this fraction is very
small up to VD ¼ 0:10, but it increases sharply beyond VD ¼ 0:15. Our procedure fails to reproduce this result, because some
energy is transferred from the other coordinates to X1 and allows the particle to overcome the barrier.

With a horizontal discontinuity, the potential step UD depends on the trajectory. It can be positive or negative, but the
average is always positive and proportional to H2

D (see Table 1). Fig. 3 shows the single trajectory DE values versus UD. Again
we see that the energy is conserved with good accuracy with negative or small positive UD. For UD > 10 mH, only a minority
of the trajectories yield unacceptably large errors ðDE > 1 mHÞ. The energy conservation error is essentially due to the dif-
ference between X02 (ending point of the integration with the FðXÞ potential) and X2 (reference point to define thr FðXÞ func-
tion). The further is X02 from X2, the larger the difference UðX02Þ � FðX02Þ, i.e. in practice DE.

The energy transfer error is instead influenced by the ratio of the velocity components parallel and perpendicular to the
discontinuity seam, Vk and V?. In fact, only the kinetic energy associated with V? should change, by the amount �UD. How-
ever, the function FðXÞ has the steepest variation in the V direction, i.e. along the a variable (remember that in practical
applications V is known, while V? is not). So, a fraction V2

k=V2 of the kinetic energy change �UD is attributed to the other
coordinates and is found missing from the E1 energy component. As shown in Fig. 4, the energy transfer error DE1 correlates
very well with UDV2

k=V2. In all our tests (see Table 1) DE1 appears to be statistically smaller than UD, i.e. the total error that
would be observed in the absence of corrective treatments. The average error is much smaller than the standard deviation,
except in the case of a purely vertical discontinuity. In particular, Fig. 5 shows that the results obtained by varying the hor-
izontal discontinuity parameter are quite acceptable up to HD ’ 0:12 a.u.

In the tests with more than two variables, the horizontal discontinuity HD was scaled down by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nvar � 1
p

, in
order to keep the average potential step UD approximately constant. The energy conservation improves with the number
Fig. 3. Error on the total energy, DE, versus the potential step UD , for an horizontal discontinuity HD ¼ 0:1 a:u:



Fig. 4. Error on the E1 energy component, DE1, versus the potential step UD times V2
k=V2, where Vk is the component of the velocity vector parallel to the

discontinuity seam. Horizontal discontinuity, HD ¼ 0:10 a:u:

Fig. 5. Averages and standard deviations of the error on the total energy, DE, and on the E1 component, DE1, as functions of the horizontal discontinuity
parameter HD .
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of variables, while the energy transfer error gradually increases, which is consistent with its origin as discussed above. For
very large systems, it seems therefore advisable to restrict the definition of the a variable to a subset of important coordi-
nates: for instance, the H atoms that undergo high frequency and small amplitude vibrations, or the MM atoms in mixed QM/
MM treatments, could be excluded. To test this idea, we changed the definition of a, Eq. (5), to a ¼ ðXr � X1;rÞ=ðX2;r � X1;rÞ
with r ¼ 1, dropping all the coordinates with r > 1. In the nvar ¼ 48 run reported in Table 1, this change reduced the energy
transfer error to 0.04 ± 1.20 mH. Notice however that in real applications one would need at least a qualitative identification
of the relevant coordinates.

In two more sets of tests we have varied the force constant C2 and the mass M. In order to keep the average potential
energy hUðt ¼ 0Þi and the potential step hUDi approximately constant, we have scaled the horizontal discontinuity HD and
the gaussian width for the X2 initial conditions as C�1=2

2 : HD ¼ 0:10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:20=C2

p
; rX ¼ 0:20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:20=C2

p
. Similarly, to avoid

changing the kinetic energy and the amplitude of the oscillation, we have scaled the width for the velocity initial conditions
as M�1=2 : rV ¼ 0:0005

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20;000=M

p
. With these provisions, the accuracy of the results is apparently not sensitive to the force

constant, nor to the mass (see again Table 1).
In the last rows of Table 1 we show the results of more technical tests. The time step Dt parameter can be varied over a

considerable range of values, without substantially affecting the results. Note that the definition of the FðXÞ function is af-
fected by the time-step, mainly through the X2 � X1 vector and the advancement coordinate a (see Eqs. (4)–(6)). The function
SðaÞ has derivatives of order n with respect to the X2 � X1 direction roughly proportional to Dt�n (with n 6 3). Larger values
of the higher order derivatives ðn > 1Þ could be detrimental to the accuracy of the trajectory integration, but the concurrent
reduction of the time-step (further decreased when using the fitting function) offsets this effect. We also tested the one-step
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procedure, that yielded larger energy conservation errors with respect to the standard three-step one (see the last two rows
of Table 1). In one test we used the same Dt ¼ 10 a:u: as in the three-step case, and in the other one we set Dt ¼ 30 a:u:, so
that the time interval for the definition of the FðXÞ function, t2 � t1, is the same as in the three-step procedure. Notice that,
even in the latter case, it is possible that either X1 or X2 lie very close to the discontinuity (see previous section and Fig. 1).

4. Concluding remarks

We have proposed a simple procedure to deal with small discontinuities in the potential energy, in trajectory simulations
of the molecular dynamics. Such discontinuities may occur when solving the electronic problem ‘‘on the fly”, with quantum
chemistry methods, during the integration of the nuclear trajectory. They are often under the ‘‘chemical” accuracy, i.e. one or
a few kcal/mol, depending on the problem.

Our procedure consists of smoothing out a discontinuity by replacing the potential computed ‘‘on the fly” with a simple
function of the nuclear coordinates for a short stretch of the trajectory. We have tested the algorithm on a model potential,
monitoring both the total energy conservation and the energy transfer between different coordinates. We have run tests
with two different types of sudden changes in the model potential, and we have varied the extent of the discontinuity, a
few other potential parameters, and some numerical parameters and options. The method reduces the error on the total en-
ergy by one order of magnitude, and the error on the energy distribution among different modes by a smaller but quite sig-
nificant factor, with respect to uncorrected trajectories. The single factor with the largest influence on the accuracy of the
algorithm is the potential energy step UD. Another important factor is the angle between the direction of the trajectory
and the discontinuity seam: small angles can favour a spurious energy transfer between different coordinates. Notice how-
ever that, while UD is easily evaluated during the integration of a trajectory, the orientation of the discontinuity seam and
therefore the angle are unknown. In practical applications, good results are expected with UD not exceeding a few mH
(1 mH = 10�3 a.u. = 0.6275 kcal/mol), which is the range of discontinuities usually tolerated on chemical accuracy grounds.
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